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Three-Particle Einstein-Podolsky-Rosen Correlations 
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It has been argued by Mermin that a gedanken decay of a three-particle system 
gives a more powerful demonstration of quantum nonlocality than Bell's analysis. 
It is shown that this claim is premature. An ad hoe model based on local realism 
is constructed in order to reproduce the quantum mechanical prediction of the 
three-particle gedanken decay. 

In recent publications (Greenberger et al., 1989; Mermin, 1990a-c) it 
has been suggested that a more powerful refutation of local hidden variables 
(LHV) or local reality (LR) can be accomplished if instead of a series of 
two-particle Einstein-Podolsky-Rosen (EPR) correlation experiments one 
performs only a single measurement involving four or three spin-l/2 
particles in a gedanken decay. 

In a nice and simple description of this three-particle EPR correlation 
by Mermin (1990a,b), the failure of LR has been attributed to a crucial 
minus sign emerging from an odd number of anticommutations of Pauli 
matrices. 

It is assumed in these references that the correlated state of the three 
spin-l/2 particles, named a, b, and c, has the following form: 

Iv') (1+o, +c)-I-o, -c)) (1) 

where I+) and I - )  specify spin up or down along an arbitrarily chosen 
axis z. 
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This correlated state has the property that consecutive measurements 
of the x component and two y components described by the three quantum 
mechanical observables 

Oj = o'ax O'by o'cy (2a) 
A 
02 = tray tr bx trcy (2b) 

63 = O-.y o'by tr~x (2c) 

lead to equal expectation values which are opposite in sign to a single meas- 
urement of the three x components represented by the quantum observable 

O =  e,xtTbxCr,x (3) 

We have in this case 

( 0 1 )  = ( 0 2 )  ~- ( 0 3 )  = - - ( 0 )  (4) 

This result can be simply derived by noting that, due to the odd number of 
anticommutators of the Pauli matrices, we have 

b, b26 =-O (5) 
A 

and that IV) is an eigenstate of the three observables OI, O2, and 03. 
It has been argued by Mermin (1990a,b) that the magic of quantum 

mechanics involving an odd number of anticommutations in equation (5) 
produces the relation (4) that refutes LR in an always vs. never way and is 
devastating for the LHV theories. 

In this paper I argue that the three-particle gedanken decay does not, 
unfortunately, refute all possible LR assumptions or all possible LHV 
theories as Bell's inequalities do. The power of the Bell inequalities follows 
from the fact that by a properly selected series of measurements involving 
spin correlations, one can rule out once and for ever all possible LR or LHV 
theories. According to Mermin (1990a,b), the three-particle decay provides 
an example in which "the elements of reality require a class of outcomes to 
occur all the time, while quantum mechanics never allows them to occur." 
I shall argue that this property is absent in the three-particle decay 
and that different models based on LR can reproduce the result given by 
equation (4). 

It is, of  course, true that the particular model of LR investigated by 
Mermin (1990a,b) is incompatible with equation (4), but the entire descrip- 
tion is vulnerable, and other ad hoe constructed models of LR can reproduce 
the quantum result. 

In the following I give an explicit construction of such an ad hoe model 
of LHV that reproduces equation (4). For the simplicity of the argument I 
restrict the description of the spin to only x and y components. Let us assume 
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that these components are described by objective local realities m,-~(A,j) and 
rn0.($i), each dependent on some local unspecified hidden variables ~,i (i= 
a, b, c). In this description the magic of quantum mechanics is removed 
entirely, because there are no commutators, observables, eigenvalues, or 
anticommutators. We are just left with statistical averages of the six objective 
realities. In such a theory correlations are described by the following 
expressions: 

O,~.v=fdZafdZ~fdZcP(~..;Zb;Zc)mox(Za)mb>,(Z~)mc~(Z~) (6a) 

02Lr~v=fd2ofdZt, fdZr (6b) 

03LHv=fdZofdZ~fdZcP(Zo;~.b;Zc)moy(Z.)mbyO.6)m~(Zc) (6c) 

OLnv=fd~,,fd~bfd~.~P(~,,;~.b;A.~)m.x(~,,)mbx(~b)m~,;(~.~) (6d) 

where the distribution P(A,a; A,b; ~,c) depends locally on the three sets of 
hidden variables ~a, Ab, and At. This distribution is positive and normalized: 

fd)~afd)~bfd;.cP()~.;~b;)~c)=l (7) 

A particular model (Mermin, 1990a,b) of LR failed to reproduce equa- 
tion (4) because of a wrong sign. I give now a different model of LHV that 
reproduces equation (4) with the correct minus sign without ever involving 
anticommutators, i.e., objects completely foreign to a local and objective 
description of spin correlations. 

This model is based on the classical Malus law for the transmission of 
light through a linear polarizer. If an electric field with polarization p 
impinges on a polarizer in a direction a, the transmitted electric field is 
attenuated by a cosine function dependent only on the relative angle between 
the directions of a and p. Let us apply this classical Malus law to the spin 
components impinging on two orthogonal directions. According to this law, 
we can associate with spin the objective realities given by the following 
formulas: 

mix=rno cos(A,;) and miy=mo cos(X/+ ~r/2) for i=a, b, c (8) 

where the value of the constant amplitude m0 will be completely irrelevant 
in our arguments concerning the magic minus sign in equation (5). 
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These expressions describe the Malus attenuation (projection) law for 
objective and local quantities of the spin. The only thing that cannot be 
controlled during a measurement is the random orientation of these objective 
quantities. This randomness is described by a set of local hidden angles A.o, 
&b, and A.c or spin orientations which have to be averaged with respect to a 
given distribution P(A.a; A.b; 2c) in order to calculate physical outcomes. 

We shall give now a completely ad hoc distribution of these angles that 
will do what quantum mechanics does. We define 

1 - cos(Za + z~  + zc)  
e(~a; ~'b; Zc)- (2/1:) 3 ( 9 )  

Note that this distribution is positive, normalized to unity if integrated over 
all the hidden angles from 0 to 27r. It also has the right marginals, i.e., any 
integration over one or two hidden angles produces a uniform distribution 
of the remaining angles. This property is in full analogy to a reduction of 
the state (1) to a subspace involving only one or two particles. In such a 
reduced subspace the state given by equation (1) becomes a completely 
mixed state. 

Using the definitions (6) and the formulas (8) and (9), we obtain 

Ol LHV = O2LHV = O3LHV ~--- - -  OLHV ( 1 0 )  

i.e., a result identical to the quantum prediction (4). The absolute value of 
these spin correlations can be made identical to the quantum mechanical 
result if we set m0=2 in the spin objective realities given by equation (8). 
Of course the local and objective variables in this case do not possess the 
algebraic properties of Pauli matrices leading to equation (5), but this does 
not matter. Only quantities averaged over the hidden angle given by equation 
(6) are observed and can be compared with an actual experiment. The most 
important conclusion from this model is the fact that the combination of 
the distribution function (9) with local realities (8) for the three spin-l/2 
particles reproduces the magic minus sign in equation (10). 

Of course the LHV model presented in this paper cannot be entirely 
right, because after all we do believe that quantum mechanics is a good 
theory. This can be seen if the transmission probability through a linear 
polarizer is investigated. In quantum mechanics the transmission of the 
particle through a polarizer (along x) is described by a projection operator 
�89 + oa.~). In the framework of LHV theory the action of this polarizer can 
be described, for example, by the LR transmission function �89 + tmo cos Z,), 
where in analogy to classical optics the parameter t can be interpreted as the 
visibility of the interference fringes. An everywhere positive LR transmission 
function with m0 = 2 will lead to a 50% visibility of the LHV correlations. 
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The quantum mechanical 100% visibility can be reproduced only with a 
negative transmission function, i.e., in clear violation of LR. But in order to 
demolish this statistical model and the LR, we have to investigate a series 
of different experimental outcomes based on Bell's inequality (Wtdkiewicz, 
1991). 

Using different quantum quasidistributions for correlated spin-l/2 
particles (Scully and Wtdkiewicz, 1990), it is possible to give a unified 
approach to the problem of locality, reality, and positivity of various phys- 
ical quantities discussed in this paper. Whatever is the mathematical descrip- 
tion of these correlations, the magic minus sign in equation (4) can be 
achieved in the framework of a statistical LHV model discussed in this paper. 

This example shows that the three-particle EPR correlations as derived 
by Mermin (1990a,b) can rule out some models of LR, but are not powerful 
enough to refute the particular model presented in this paper. Thus the very 
strong statement made by Mermin (1990a) that the three-particle gedanken 
experiment is an always vs. never refutation of the EPR argument is 
premature. 
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